Material Properties for Brady Hot Springs Nevada USA from PoroTomo Project ZnormJPG.zip

The PoroTomo team has completed inverse modeling of the three data sets (seismology, geodesy, and hydrology) individually, as described previously. The estimated values of the material properties are registered on a three-dimensional grid with a spacing of 25 meters between nodes. The material properties are listed an Excel file. Figures show planar slices in three sets: horizontal slices in a planes normal to the vertical Z axis (Z normal), vertical slices in planes perpendicular to the dominant strike of the fault system (X normal), and vertical slices in planes parallel to the dominant strike of the fault system (Y normal).

The results agree on the following points. The material is unconsolidated and/or fractured, especially in the shallow layers. The structural trends follow the fault system in strike and dip. The geodetic measurements favor the hypothesis of thermal contraction. Temporal changes in pressure, subsidence rate, and seismic amplitude are associated with changes in pumping rates during the four stages of the deployment in 2016. The modeled hydraulic conductivity is high in fault damage zones. All the observations are consistent with the conceptual model: highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells. Horizontal slices in planes normal to PoroTomo Z axis. JPG format.

Data and Resources

Metadata Source

Additional Info

Field Value
Citation Date 2019-03-06T00:00:00-07:00

Harvest Information

Original ID f0000005-58cc-4372-a567-000000001124
Index Date 2019-03-19T08:45:23-06:00
Original Format ISO-USGIN
Original Version 1.2

Author

Name Kurt L Feigl
Position primary contact
Organization University of Wisconsin
Email feigl@wisc.edu

Geographic Extent

North Bound 39.9883
South Bound 39.5883
East Bound -118.8167
West Bound -119.2167